Search this site
Embedded Files
International Journal of Multidisciplinary Sciences and Advanced Technology
  • Home
  • Issues
  • About IJMSAT
  • Scope of the Journal
  • Editorial Board
  • Publication Fees
  • Indexing
  • Submit Articles
  • Instructions for Authors
  • Archives
    • IJMSAT Volume 7 Issue 1
    • IJMSAT Volume 6 Issue 4
    • IJMSAT Volume 6 Issue 3
    • IJMSAT Volume 6 Issue 2
    • IJMSAT Volume 6 Issue 1
    • IJMSAT Volume 5 Issue 4
    • IJMSAT Volume 5 Issue 3
    • IJMSAT Volume 5 Issue 2
    • IJMSAT Volume 5 Issue 1
    • IJMSAT Volume 4 Issue 4
    • IJMSAT Volume 4 Issue 3
    • IJMSAT Volume 4 Issue 2
    • IJMSAT Volume 4 Issue 1
    • IJMSAT Volume 3 Issue 4
    • IJMSAT Volume 3 Issue 3
    • IJMSAT Volume 3 Issue 2
    • IJMSAT Volume 3 Issue 1
    • IJMSAT Volume 2 Issue 12
    • IJMSAT Volume 2 Issue 11
    • IJMSAT Volume 2 Issue 10
    • IJMSAT Volume 2 Issue 9
    • IJMSAT Volume 2 Issue 8
    • IJMSAT Volume 2 Issue 7
    • IJMSAT Volume 2 Issue 6
    • Special Issue 1 2021
    • IJMSAT Volume 2 Issue 5
    • IJMSAT Volume 2 Issue 4
    • IJMSAT Volume 2 Issue 3
    • IJMSAT Volume 2 Issue 2
    • IJMSAT Volume 2 Issue 1
    • IJMSAT Volume 1 Issue 12
    • IJMSAT Volume 1 Issue 11
    • IJMSAT Volume 1 Issue 10
    • IJMSAT Volume 1 Issue 9
    • IJMSAT Volume 1 Issue 8
    • IJMSAT Volume 1 Issue 7
    • IJMSAT Volume 1 Issue 6
    • IJMSAT Volume 1 Issue 5
    • IJMSAT Volume 1 Issue 4
    • IJMSAT volume 1 Issue 3
    • IJMSAT Volume 1 Issue 2
    • IJMSAT Volume 1 Issue 1
  • Covid-19
    • Special Issue 4
    • Special Issue 3
    • Special Issue 2
    • Special Issue 1
  • Contact
  • Publication Ethics
  • License
International Journal of Multidisciplinary Sciences and Advanced Technology
  • Home
  • Issues
  • About IJMSAT
  • Scope of the Journal
  • Editorial Board
  • Publication Fees
  • Indexing
  • Submit Articles
  • Instructions for Authors
  • Archives
    • IJMSAT Volume 7 Issue 1
    • IJMSAT Volume 6 Issue 4
    • IJMSAT Volume 6 Issue 3
    • IJMSAT Volume 6 Issue 2
    • IJMSAT Volume 6 Issue 1
    • IJMSAT Volume 5 Issue 4
    • IJMSAT Volume 5 Issue 3
    • IJMSAT Volume 5 Issue 2
    • IJMSAT Volume 5 Issue 1
    • IJMSAT Volume 4 Issue 4
    • IJMSAT Volume 4 Issue 3
    • IJMSAT Volume 4 Issue 2
    • IJMSAT Volume 4 Issue 1
    • IJMSAT Volume 3 Issue 4
    • IJMSAT Volume 3 Issue 3
    • IJMSAT Volume 3 Issue 2
    • IJMSAT Volume 3 Issue 1
    • IJMSAT Volume 2 Issue 12
    • IJMSAT Volume 2 Issue 11
    • IJMSAT Volume 2 Issue 10
    • IJMSAT Volume 2 Issue 9
    • IJMSAT Volume 2 Issue 8
    • IJMSAT Volume 2 Issue 7
    • IJMSAT Volume 2 Issue 6
    • Special Issue 1 2021
    • IJMSAT Volume 2 Issue 5
    • IJMSAT Volume 2 Issue 4
    • IJMSAT Volume 2 Issue 3
    • IJMSAT Volume 2 Issue 2
    • IJMSAT Volume 2 Issue 1
    • IJMSAT Volume 1 Issue 12
    • IJMSAT Volume 1 Issue 11
    • IJMSAT Volume 1 Issue 10
    • IJMSAT Volume 1 Issue 9
    • IJMSAT Volume 1 Issue 8
    • IJMSAT Volume 1 Issue 7
    • IJMSAT Volume 1 Issue 6
    • IJMSAT Volume 1 Issue 5
    • IJMSAT Volume 1 Issue 4
    • IJMSAT volume 1 Issue 3
    • IJMSAT Volume 1 Issue 2
    • IJMSAT Volume 1 Issue 1
  • Covid-19
    • Special Issue 4
    • Special Issue 3
    • Special Issue 2
    • Special Issue 1
  • Contact
  • Publication Ethics
  • License
  • More
    • Home
    • Issues
    • About IJMSAT
    • Scope of the Journal
    • Editorial Board
    • Publication Fees
    • Indexing
    • Submit Articles
    • Instructions for Authors
    • Archives
      • IJMSAT Volume 7 Issue 1
      • IJMSAT Volume 6 Issue 4
      • IJMSAT Volume 6 Issue 3
      • IJMSAT Volume 6 Issue 2
      • IJMSAT Volume 6 Issue 1
      • IJMSAT Volume 5 Issue 4
      • IJMSAT Volume 5 Issue 3
      • IJMSAT Volume 5 Issue 2
      • IJMSAT Volume 5 Issue 1
      • IJMSAT Volume 4 Issue 4
      • IJMSAT Volume 4 Issue 3
      • IJMSAT Volume 4 Issue 2
      • IJMSAT Volume 4 Issue 1
      • IJMSAT Volume 3 Issue 4
      • IJMSAT Volume 3 Issue 3
      • IJMSAT Volume 3 Issue 2
      • IJMSAT Volume 3 Issue 1
      • IJMSAT Volume 2 Issue 12
      • IJMSAT Volume 2 Issue 11
      • IJMSAT Volume 2 Issue 10
      • IJMSAT Volume 2 Issue 9
      • IJMSAT Volume 2 Issue 8
      • IJMSAT Volume 2 Issue 7
      • IJMSAT Volume 2 Issue 6
      • Special Issue 1 2021
      • IJMSAT Volume 2 Issue 5
      • IJMSAT Volume 2 Issue 4
      • IJMSAT Volume 2 Issue 3
      • IJMSAT Volume 2 Issue 2
      • IJMSAT Volume 2 Issue 1
      • IJMSAT Volume 1 Issue 12
      • IJMSAT Volume 1 Issue 11
      • IJMSAT Volume 1 Issue 10
      • IJMSAT Volume 1 Issue 9
      • IJMSAT Volume 1 Issue 8
      • IJMSAT Volume 1 Issue 7
      • IJMSAT Volume 1 Issue 6
      • IJMSAT Volume 1 Issue 5
      • IJMSAT Volume 1 Issue 4
      • IJMSAT volume 1 Issue 3
      • IJMSAT Volume 1 Issue 2
      • IJMSAT Volume 1 Issue 1
    • Covid-19
      • Special Issue 4
      • Special Issue 3
      • Special Issue 2
      • Special Issue 1
    • Contact
    • Publication Ethics
    • License

Volume 7, Issue 1

Full Text PDF

IJMSAT 2026

1-1-8

1. Correlation Matrix and Regression Equation for Physicochemical Parameters in Groundwater Wells in Coastal Hadhramout _Yemen

Sami Gumaan Daraigan, et al./ International Journal of Multidisciplinary Sciences and Advanced Technology Vol 7 No 1(2026) 1-8

ABSTRACT


Groundwater wells are the main source of drinking water in Hadhramout and throughout Yemen. Regression equations have been developed after a methodical examination of the relationships between water quality parameters. The quality of 41 water well data for coastal Hadhramout, Yemen, was examined in this study. In this study, correlation analysis and regression equations were used. Hydrogen ion concentration (pH), electrical conductivity (EC), turbidity (Turb), total dissolved solids (TDS), total hardness (TH), total alkalinity (TA), chloride (cl-), sulfate (SO42-), fluoride (F-), iron (Fe), nitrate (NO3-), manganese (Mn), sodium (Na+), and potassium (k+) were the physiochemical parameters that were examined. The results collected indicated that certain factors have strong relationships with one another, whereas the other parameters have weak and moderate relationships. Thus, by predicting parameters through the establishment of appropriate regression equations between them, this study facilitates the allocation of these results to reduce the expenses associated with certain analytical tools.

 

Keywords: Water quality parameters, Correlation Coefficient, Regression Equations, Hadhramout, Yemen.


Full Text PDF

IJMSAT 2025

1-9-14

2. XGBoost Regression for Predicting Nano-Silica Content in Concrete: Insights from Concrete Type and Strength Properties 

Dunyazad K. Assi./ International Journal of Multidisciplinary Sciences and Advanced Technology Vol. 7, No. 1 (2026) 9-14

ABSTRACT



This study explores the use of the XGBoost regression model to predict the Nano-Silica (NS) content in concrete based on features such as concrete type, compressive strength, and flexural strength. The dataset, which includes these features, was processed to handle missing data and convert categorical variables into numerical values. The data was then split into training and testing sets to evaluate the model's performance. The model achieved an R² score of 0.82, explaining approximately 82% of the variation in NS content. The Root Mean Squared Error (RMSE) of 2.25% indicated that the predictions were accurate with relatively small errors. Visual assessments, including scatter plots and residual plots, showed that the model's predictions closely matched the actual values, with residuals randomly distributed and no clear bias.The model performed well for traditional concrete types, especially Ordinary Portland Cement (OPC), where the relationship between flexural strength and NS content was clear. However, for more specialized mixes, such as High-Strength Concrete (HSC) and Self-Compacting Concrete (SCC), the model showed greater variability. This suggests that additional features, such as specific mix designs or material properties, could enhance the model's accuracy for these concrete types. Overall, the XGBoost model is a valuable tool for predicting NS content in concrete, with opportunities for further refinement to improve predictions for specialized concrete mixes.

 

Keywords: XGBoost, Nano-Silica, Concrete type, Compressive Strength, Flexural Strength.

Volume 2, Issue 5, 2021

Volume 2, Issue 4, 2021

Volume 2, Issue 3, 2021

Volume 2, Issue 2, 2021

Volume 2, Issue 1, 2021

Volume 1, Issue 12, 2020

Volume 1, Issue 11, 2020

Volume 1, Issue 10, 2020

Volume 1, Issue 9, 2020

Volume 1, Issue 8, 2020

Volume 1, Issue 7, 2020

Volume 1, Issue 5, 2020

Volume 1, Issue 4, 2020

Volume 1, Issue 3, 2020

Volume 1, Issue 2, 2020

Volume 1, Issue 1, 2020


All articles and accompanying materials published by IJMSAT or on IJMSAT Site, unless otherwise indicated, are licensed by the respective authors of such articles for use and distribution by you subject to citation of the original source in accordance with the Creative Commons Attribution License.

If you have questions related IJMSAT do not hesitate to contact Editorial Board by Contact form or directly by email: editorijmsat1@gmail.com, or  by:


P. O. Box    61110 - 20 - IRAQ
Tel. 009647710342809 -21119800
Copyright 2020 ©IJMSAT All Rights Reserved. SUPPORTED BY :IJMSATmiddleeastisc21119800 
Google Sites
Report abuse
Google Sites
Report abuse